Leila Bridgeman

Assistant Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

Leila Bridgeman joined Duke as an assistant professor of mechanical engineering and materials science on January 1, 2018.

She received B.Sc. and M.Sc. degrees in Applied Mathematics in 2008 and 2010 from McGill University, Montreal. In 2016, she completed a Ph.D. in Mechanical engineering, also at McGill University.

Her doctoral research involved a return to the foundational work of George Zames, exploring how the theory of conic sectors can be used to design controllers that guarantee closed-loop input-output stability when more conventional methods fail to apply. Her graduate studies involved research semesters at University of Michigan, University of Bern, and University of Victoria, along with an internship at Mitsubishi Electric Research Laboratories (MERL) in Boston.

Through her research, Leila strives to bridge the gap between theoretical results in robust and optimal control and their use in practice. She explores how the tools of numerical analysis and input-output stability theory can be applied to the most challenging of controls problems, including the control of delayed, open-loop unstable, and nonminimum-phase systems.  Her focus has been on the development of readily-applicable controller synthesis and stability analysis methods based on the evaluation of linear matrix inequalities (LMIs). Resulting publications have considered applications of this work to robotic, process control, and time-delay systems.

She is also interested in model predictive control (MPC) especially when applied to switched systems. Bridgeman continues to collaborate with colleagues at MERL, enabling the use of MPC in novel applications including networked systems, vehicle control, heating, and ventilation.

Appointments and Affiliations

  • Assistant Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

Contact Information

  • Office Location: North Building, Office 129, 304RESEARCH Dr-Box 103957, Durham, NC 27708
  • Office Phone: +1 919 660 1260
  • Email Address: leila.bridgeman@duke.edu
  • Websites:

Education

  • Ph.D. McGill University (Canada), 2016

Research Interests

Robust and optimal control, linear matrix inequalities (LMIs), model predictive control (MPC), delayed systems, input-output stability, passivity.

Courses Taught

  • ME 758S: Curricular Practical Training
  • ME 592: Research Independent Study in Mechanical Engineering or Material Science
  • ME 591: Research Independent Study in Mechanical Engineering or Material Science
  • ME 555: Advanced Topics in Mechanical Engineering
  • ME 492: Special Projects in Mechanical Engineering
  • ME 491: Special Projects in Mechanical Engineering
  • ME 392: Undergraduate Projects in Mechanical Engineering
  • ME 344L: Control of Dynamic Systems
  • EGR 393: Research Projects in Engineering
  • ECE 391: Projects in Electrical and Computer Engineering
  • ECE 382L: Control of Dynamic Systems
  • ECE 291: Projects in Electrical and Computer Engineering

In the News

Representative Publications

  • Lavaei, R., and L. J. Bridgeman. “Systematic, Lyapunov-Based, Safe and Stabilizing Controller Synthesis for Constrained Nonlinear Systems.” IEEE Transactions on Automatic Control 69, no. 5 (May 1, 2024): 3011–23. https://doi.org/10.1109/TAC.2023.3302789.
  • Locicero, E. J., and L. J. Bridgeman. “Structured, Reduced-Order H2-Conic Control.” IEEE Transactions on Automatic Control 69, no. 2 (February 1, 2024): 1356–63. https://doi.org/10.1109/TAC.2023.3303489.
  • Hall, R., and L. Bridgeman. “Switched systems with transient unsustainable modes: Stability and feasibility.” International Journal of Robust and Nonlinear Control, January 1, 2023. https://doi.org/10.1002/rnc.6730.
  • Lavaei, R., R. Hall, C. Danielson, and L. Bridgeman. “Constraint Enforcement via Tube-Based MPC Exploiting Switching Restrictions.” IEEE Control Systems Letters 5, no. 5 (November 1, 2021): 1789–94. https://doi.org/10.1109/LCSYS.2020.3045391.
  • Hall, R. A., and L. J. Bridgeman. “Computationally Tractable Stability Criteria for Exogenously Switched Model Predictive Control.” IEEE Control Systems Letters 5, no. 5 (November 1, 2021): 1777–82. https://doi.org/10.1109/LCSYS.2020.3043866.